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ABSTRACT

Application of classic triangulation methods will allow

the location of a radar to be determined by passive sensors.

Through the use of modern digital signal processing techniques

this estimate can be made in a simpler fashion using a

conventional receiver.

In this thesis a technique is developed for time

difference of arrival (TDOA) estimation using a frequency

domain based correlation detector driven by an envelope

detector. Time lag boundaries are defined on the output of the

correlator. A fixed detection threshold is calculated to

permit constant false alarm rate (CFAR) detection. The

performance of the correlation detector is plotted as a

receiver operating characteristic (ROC) curve as a function of

signal to noise ratio (SNR). An interactive MATLAB software

program is provided to perform either spectral domain or time

domain based correlation.

Spectral domain based correlation uses the Fast Fourier

Transform (FFT). Implicit with the use of the FFT are finite

arithmetic internal processing errors which are modeled as

independent uncorrelated noise sources. A method is presented

to account for SNR degradation at the output of the FFT.
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I. INTRODUCTION

A. BACKGROUND

Interception of radar transmissions by passive sensors is

one of the responsibilities of electronic intelligence.

Analysis of the signal of a radar can provide an estimate of

the distance and direction of an emitter relative to an

intercepting receiver. Knowing the location is an important

consideration in the evaluation of strategic and tactical

capabilities of the radar.

Triangulation is a traditional technique where the angle

of arrival of a radar signal at two spatially separated

receivers provides an estimate of the transmitters location.

With the advent of the computer, digital signal processing

algorithms can be implemented that provide emitter range

information and hence allow localization in a sequential

sense. One of these processing algorithms is called the time

difference of arrival (TDOA) method.

B. TIM DIIFIRICZ OF ARRXVAL

The TDOA algorithm relies on two bistatic passive sensors

attempting to receive the transmission of an active radar.

Reception by the two sensors is preferentially done in the

main lobe of the transmitting radar, but due to the

mmmimm m m m m mm mmlm m m m 1



nonsynchronous nature of the task, reception through one of

the sidelobes of the transmitting radar is expected with a

resulting decrease in received signal power.

Given a transmitted radar pulse f(t), two physically

separated passive sensors will most likely receive this pulse

at times tj and t1+T. The time difference T is proportional to

their differential distance relative to the emitter. This time

difference of arrival can be used in the estimation of the

differential range of the emitter to the receivers. The

reception of the first pulse in a pulse burst by the sensors

is paramount in performing the TDOA estimate.

The concept of measuring the TDOA of a radar pulse between

two separated receivers can be modeled by a hyperbola. The two

sensors whose positions are known are located at the two focal

points of the hyperbola. A transmitting radar is located in

the area surrounding the two sensors. Figure 1 shows this

model.

A hyperbola is the locus of points in which the distance

from any one point on the hyperbola to one focus differs by a

constant amount from the distance to the other focus. This

differential distance is proportional to a difference in

arrival time 1, of a radar pulse as detected between the two

sensors. Once T is measured the hyperbola can be drawn. If the

sensors (moving aircraft or nongeostationary satellites)

repeat the differential arrival time measurements at several
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time intervals, a series of hyperbolas will be generated,

fixing the location of the transmitting radar. Alternately,

the angle of arrival at either sensor can be used to define

the position of the transmitter on the hyperbola. A good

introduction into the use of the hyperbola in navigation is

found in [Ref. l:p. 27].

Range (meters;

/

'0 Transmittng Radar

Sen or I Sensor 2 Range turete,,;

(focal point 1) (focal point 2)

Hyperbola for t d I ms.
d

td = t +T) -t

Figuze 1. Time difference of arrival model.

This discussion assumes that the radar signal received by

the two sensors is induced by the direct wave from the

transmitter. The effects of refraction and reflection on

propagating radar waves are not covered here.
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The purpose of this thesis is to develop and test an

algorithm to estimate the differential arrival time T, of a

pulsed radar signal collected by two passive sensors. If the

pulse burst is collected in the time domain, time correlation

can be used to generate a TDOA estimate. The Fast Fourier

Transform (FFT) can also be used to perform the correlation of

the two received signals (i.e., fast correlation).

Additive noise n (t), superimposed onto a transmitted radar

signal f(t) by the environment and the radar receiver, creates

a composite signal s(t) at the receiver

s(t) = ff(t) n(() (1)

The use of the Fourier Transform for TDOA estimation is

attractive because of the processing gain (PG) a radar signal

receives in being transformed from the time domain to the

frequency domain during the detection process. FFT processing

gain for real valued signals can be approximated by

PG (dB) = (log, [number points in data record] -1) 3 (2)

See for example [Ref. 2:p. 33]. The signal to noise ratio

(SNR) at the output of a FFT (SNRm) is a function of the PG

and the SNR at the input to the FFT (SNRW). This relation is

given by

4



SNRo = SNRZN + PG. (3)

The corruptive effects of additive noise are reduced by the

transformation, allowing the frequency domain detection of the

signal.

C. RADAR TYPES

The TDOA algorithm is primarily applied to pulsed radars.

The continuous wave (CW) radar provides target radial velocity

through the Doppler shift of its return. The CW radar does not

use a pulsed transmission. Therefore, the TDOA algorithm

cannot not be directly applied to the reception of CW signals.

Pulsed radars can be divided into two broad categories,

ordinary low pulse repetition frequency (PRF) pulsed radars

and the pulse Doppler radars.

Low PRF radars can yield unambiguous range information,

while their radar returns do not give target velocity

information directly. Generally because of the long duty cycle

of the low PRF radar, the probability of receiving all radar

pulses in a pulse burst by two passive sensors is great. The

TDOA algorithm can then estimate the differential distance to

the emitter using the low PRF burst.

The pulse Doppler radar uses coherent transmission and

reception with a moderately high PRF [Ref. 3:p. 17.1]. It

gives both range and radial velocity information about a

target, though not with the same accuracy of the ordinary

5



pulsed radar or CW radar respectively. In the pulse Doppler

radar, as in all non-bistatic radars, the receiver must be

turned off while the transmitter is on. Because of this, a

range ambiguity exists. Echoes having delay times equal to an

integral multiple of the PRF will be undetected. Target echoes

that remain within this blanked time interval will remain

undetected. A second source of range ambiguity exists. For a

target located at a distance r, from the tracking radar, all

other targets in the main beam of the radar a distance

Z11 2 r j,  3 r j,  4 r j . .. k r,

(4)
where k = integer

will appear to be approximately the same distance from the

radar.

Pulse Doppler radars can be divided into a low, medium and

high PRF class. Both the low and medium PRF pulse Doppler

radar transmissions can be passively intercepted and a

relatively simple TDOA estimate can be formed.

Reception of each pulse in a pulse burst from a high PRF

pulse Doppler radar by two independent passive sensors can be

difficult. If either sensor misses the first pulse, the TDOA

estimate will be in error. This is true for any radar, but has

a higher likelihood of occurring in the high PRF radars due to

the shorter pulse widths used. Should the pulse burst be coded

so that a nonuniform time pulse sequence is generated (i.e.,

6



staggered PRF), then missed pulses by either sensor will not

seriously degrade the validity of the rDOA estimate.

D. FAST FOURIER TRANSFORM OUTPUT SIGNAL TO NOISE RATIO

The Fourier transform is a computationally intensive

mathematical operation. When implemented on an FFT processor

using fixed point arithmetic, internal processing errors are

generated. These errors are a function of the transform size,

and the number of bits used internally in the FFT processor.

The primary building block of the FFT is the butterfly

algorithm. There are three dominant processing errors that

occur within the butterfly. They are scaling, truncation and

trigonometric errors. These can be modeled as independent,

uncorrelated noise sources. The cumulative effect of these

noise sources is to reduce the potential SNR at the output of

the butterfly, and therefore, the FFT processor.

This thesis will also examine the effects of noise caused

by FFT processing, and will present a method to account for

the degradation of the output SNR due to finite arithmetic.

Certain FFT implementations will keep the signal energy larger

with respect to the three noise power sources than others.

7



II. TIME DOMAIN BASED CORRELATION

A. BACKGROUND

The correlation function R(T) measures the degree of

similarity between two signals s(t) and g(t) and is described

by

R(T) = limit,--. TfTs(t) g(r + t) dt2T T (5)

where g(? + t) = g(t) displaced by the shiftT

Correlation can be performed in a radar receiver between

a target return corrupted by additive noise, and a replica of

the transmitted signal maintained by the radar. This replica

is designed into the frequency response of the matched filter

of the radar receiver. (Ref. 4:p. 373].

Correlating two signals produces an output that does not

resemble either of the two input signals. The shape of the

received waveform is destroyed during the correlation process.

The useful item of correlation is an amplitude peak, where the

location along the time axis of this peak indicates the amount

of time that one signal lags the other.

If the correlation process occurs between a signal and a

delayed replica of itself, the process is called

autocorrelation. If two dissimilar signals are correlated, the

process is called crosscorrelation.
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B. AUTOCORRELATION

Autocorrelation is the process by which two identical

signals, one a delayed replica of the other, are correlated.

The autocorrelation function of a discrete time sequence x(i)

is defined by [Ref. 5:p. 556]

N-i - IIIrX(1 E X x(i) X(i + i
1=0 (6)

where 1 = shift operator
N = number of data points in x(n)

This function is not scaled with respect to the shift operator

nor the number of data points. Figure 2 (a) shows the effect of

autocorrelation on a burst of 13 pulses of unit amplitude.

Normalized autocorrelation produces a triangular envelope

waveform of height one at a time lag of zero. The location of

this peak indicates that the time shift for maximum overlap

between the pulse burst and a shifted replica of itself is

zero.

For illustration, a Barker coded sequence of pulses of

length 13 is also autocorrelated in Figure 2(b). The Barker

code is given by +++++--++-+-+, where + and - could represent

0 and n radians carrier phase shift, respectively. Barker

coding of a pulse sequence constructively modifies the

correlation output to magnify the time lag peak. The zero lag

point has the greatest amplitude. Adjacent peaks are

significantly reduced in amplitude. Because of this reduction,

9



uniform autocorrelation. 50% duty cycle Barker code autocorrelation 50% duty cvcle.Vr 1A i I

IIII0.8 0.8-

0.67 A- * 0.6-

.0.4.- " 04

JI'l li *i
0.2? A

-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30

time lag time lag

(a) (b)

Figure 2. (a) Normalized autocorrelation of 13 equal
amplitude pulses. (b) Normalized autocorrelation of 13 Barker
coded pulses.

if noise is added to the received signal, a Barker coded radar

pulse burst will have a correlation peak that is not as easily

confused with adjacent peaks.

Now consider the autocorrelation of a random process. An

independent, identically distributed zero mean Gaussian

sequence with variance of one is shown in Figure 3. The

autocorrelation of this sequence produces a peak at zero time

lag. There is no strong correlation of the Gaussian noise

except at zero time lag. The autocorrelation of Rayleigh

distributed noise is shown in Figure 4.
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Gaussian distributed noise normalied Gaussian autocorrelation
4 1

2'-
06-

40 00.i

-2 0[

0 20 400 600 800 1000 -ro 50 000 10
time time lag

(a) (b)

Figure 3. (a) Gaussian distributed noise sequence.
(b) Normalized autocorrelation of Gaussian noise.

Rayleigh distributed noise normalized Rayleigh autocorrelation
4 1 1

0.84
3

T, 20

0 'A

0 200 400 600 800 1000 4000 -00 0 500 1000

time time lag

(a) (b)

Tigure 4. (a) Rayleigh distributed noise sequence.
(b) Normalized autocorrelation of Rayleigh noise.
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Rayleigh distributed noise has a mean (dc) value of

mean value = (1 (7)

where a = standard deviation

The autocorrelation function of Rayleigh noise has twc

components. A triangular envelope caused by the dc component

of the Rayleigh noise, and a weighted delta function at the

apex of the triangle which indicates the time shift of maximum

overlap of the two sequences. Clearly maximum overlap occurs

at a time shift of zero for any autocorrelation function.

C. CROSSCORULLTION

Crosscorrelation is the process wherein two different

signals are correlated. The crosscorrelation function of a

discrete time sequence is defined by

N-i -III

r (1) = x(i)y(i + 1)

where x(i) and y(i) are two different sequences.

This function is not scaled with respect to the shift operator

nor the number of data points. Figure 5 shows the

crosscorrelation of two uncorrelated Gaussian noise sequences

and two uncorrelated Rayleigh noise sequences. Clearly, no

dominant amplitude peak is visible in either crosscorrelation

plot. Lack of a dominant peak indicates there is no strong

correlation between the two sets of noise sequences.

12
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Figure 5. (a) Normalized Gaussian noise crosscorrelation.
(b) Normalized Rayleigh noise crosucorrelation.

D. CORRZLATION COZFFICIZNT

A measure of the linear dependence between any two zero

mean stationary time functions x(t) and y(t) 'is the

correlation coefficient function and is defined [Ref. 6:p. 48]

as

p()= r,(r)

VF=,oV;TUo (9)

where Ip€,,( ) I s 1 for all c.

This function is the crosscorrelation function normalized by

the square root of the maximum values of the individual

autocorrelation functions. The normalizing factor is not a lag

dependent quantity.
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Given two time series x (t) and y (t) where a is any

positive number

P,(r) = I if x(t) = ay(t)

P"Y(r) = -1 if x(t) -a'y(t) (10)

p (T) = 0 if x(t) and y(t) are uncorrelated.

Another way of defining a normalized correlation

coefficient for a discrete time series of finite duration is

given by

N-i-l I
~ x(1) y(i + 1)

pN-(1) N -0 N-1-11

Ex(i)2 y(1+l)1
1=0

Z. SQUaRB-LAN DETZCTION AND CORRL&TION

If x(t) is a real valued function of time, the Hilbert

transform of x(t) is defined by (Ref. 6:p. 484] as

A(t) = H [x(t)]

=f-(x(U)U) du
7C ( t (12 )

= x(t) *

where * = convolution operation

The output of a square-law envelope detector u(t), can be

described by

14



u(t) = x2 (t) +

where x(t) = real valued time function (13)
input to square-law detector

The correlation coefficient function of two time functions

x(t) and y(t) is defined in Equation 9. The Hilbert transform

of the correlation function is defined as

Oxy (T) --H [ py(T)]

fX (r)
MY (14)

where ox and ay = standard deviation of x and y
respectively

The correlation coefficient for two square-law envelope

detected signals, p,,(), is defined by [Ref. 6:p. 512] as

PV-C MP 2 X (,r) +p2X 0
(15)

where u(t) = square-law detected signal of x(t)
v(t) = square-law detected signal of y(t)

The quantity p(,T) produces a sharper correlation peak than

p (t). This sharpening of the correlation function peak output

can aid in locating the TDOA correlation peak. An example of

both p,(C) and p ( ) is plotted in Figure 6.

f. ZW4LOWV COIBZLTION AND RELATED STATISTICS

In this thesis, time domain based correlation will be

performed on the output of an envelope detector. An envelope

detector can be easily implemented in hardware using a diode.

15



normalized correlation coefficient normalized correlation coefficient and Hilbert

0.8- 0.8-
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1-oo 50 -00 -50 l 50 100
timne tag titne ag

(a) (b)

Figure 6. (a) Normalized correlation coefficient. (b) Hilbert
transform of the normalized correlation coefficient (dotted
line) .

To derive the expected value and variance of the

crosscorrelation function, two cases must be considered. These

cases are noise only present, and signal plus noise present in

both channels of the correlator. Under the noise only case,

the statistics for the correlator output are easily derived.

We consider two real, independent identically distributed,

zero mean noise series at the input to the correlator. Each

series has zero mean and variaaice & . It is shown in Appendix

A, that the expected value of the output of the

crosscorrelation function r37(#) is

E[rXY(1)] 0 . (16)

16



The variance of the output of the crosscorrelation function

rY(Q) is

a2 = (N-i11)o 4  (17)

where N = number of data points

Since equal variances are assumed for both time series, 43 is

the square of the variance of either noise series.

G. BLOCK CORRZLATION

Two time sequences can be correlated by any of three

different methods. These will be discussed below.

The first method blocks the length of each input sequence.

Correlation of these blocks will provide an output with a

variance given by Equation 17. The linear dependence of the

correlation variance on (N-111) is shown in Figure 5 for zero

mean Gaussian noise. Figure 5 shows the correlated output at

1 =0 (zero time lag) is scaled by (N-j 0 )-N. Correlation output

at a time lag of ±N are scaled by (N-INI)-O. The linear

dependance of the correlation output variance on the time lag

does not allow a constant detection threshold, which is needed

to automatically determine the location of the correlation

peak.

A second method of correlation blocks a fixed length

sequence x(n) and correlates it with an arbitrarily long

sequence y(n). The correlation output for this algorithm has

17



a variance of NO4. Clearly, no scaling of the correlation

output variance as a function of time lag would occur.

A third method is scaling applied to the output of the

first technique. The correlator output is multiplied by a

weighting function, l/(N-I)Q 1/2 to correct for the lag

dependency of the variance. The selection of a constant

detection threshold will be addressed in Chapter V.

18



III. FMQUNCY DOMAIN BASED CORRELLTION

A. FOURIER TRANSFORM

Frequency domain techniques can be used to perform fast

correlation rather than the time domain techniques previously

discussed. The Fourier transform translates the discrete time

sequence x(n) into the frequency domain .

For a finite duration time series x(n), the discrete

Fourier transform (DFT) is defined by the pair of equations

(Ref 5:p. 100]

N- 3_ nk

X(k) = E x(n) e N, 0< k < N-1
n-0 (18)

x(n) = X(k) e ,0 - n i N-I
k-0

Equation 18 is used to transform the N discrete sample values

into N frequency domain coefficients.

The following discussion is based on (Ref. 5:p. 286]. The

DFT is a computationally intensive algorithm if implemented

directly. The direct evaluation of the DFT requires N2 complex

multiplications. The time required for the evaluation of a DFT

is proportional to N2.

Algorithms have been designed that take advantage of the

symmetry and periodicity of the DFT, reducing the amount of

computation required to solve the DFT. Any of these algorithms

are referred to as the FFT.
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Generally, the FFT requires (N/2)log2N complex

multiplications. This smaller computational workload becomes

significant as N, the number of data points in the time

series, becomes larger.

B. NORMALIZID FREQUNCY DOMAIN CORRELLATION

In some radar receivers the processing of pulse sequences

occurs in the frequency domain. Therefore, a frequency

representation of the time domain pulses may already exist.

The frequency coefficients do not necessarily need to be

transformed back into the time domain to perform the

crosscorrelation.

Frequency domain data can be crosscorrelated by

multiplying one set of coefficients by the complex conjugate

of the second set of coefficients. The product is translated

back to the time domain through the use of the inverse FFT.

Frequency domain based normalized crosscorrelation is

described by
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1 -' (X(k)'Y(k)) e N 0  1N-p.(1) = NL -, 0 E 1 & N-Ik-0 N-1 N-1NkX(k 12 EIY(k) 12

k-o k-0 (19)
= 0 otherwise

where X(k) = FFT of the series x(n)
Y(k) = FFT of the series y(n)

* = conj uga ti on
p (1) = normalized correlation function

To avoid circular correlation, both time domain pulse

sequences are zero padded to N, data points

N, Nu +N N -o

where N, = number of data points in x(n) (20)
NY = number of data points in y(n).

To take advantage of the processing speed of FFT algorithms,

N. is made a power of two by increasing its length with

additional zero padding

N , = 2- a N , + NY - 1 (21)

where m is an integer

Prior to any zero padding, the dc component is removed to

create zero mean pulse sequences. Both sequences, each of

length N, are then transformed to the frequency domain through

the FFT and processed using the frequency domain correlation

technique. A MATLAB implementation of frequency domain

crosscorrelation is given in Appendix B (FreqCorr7.m).
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C. TIMM DZIrrRiNCZ OF ARRIVAL (FOURIR DOlAIN)

The normalized crosscorrelation function implemented in

the frequency domain (Equation 19) is used to estimate the

TDOA. The crosscorrelation of two similar signals will produce

a dominant peak in the output of the correlator. This peak is

used as an estimate of the TDOA between the two signals. For

two signals that have not been corrupted by noise, the

location in time of this peak is easily determined. Pulsed

signals that have been distorted by noise produce a noisy

correlated output. The output noise can mask the TDOA peak in

low SNR conditions. Consequently, the probability of selecting

a noise sample instead of the true TDOA peak increases with

decreasing SNR.

Figures 7,8 and 9 show the frequency domain based

crosscorrelation of two pulse sequences as a function of

decreasing SNR. A reception is simulated with a pulse burst

demodulated by one receiver fed into one channel, and a pulse

burst demodulated by a second receiver fed into the second

channel of the correlator. Pulse burst one has a transmission

delay of zero. Pulse burst two has a delay of 50 time units.

Therefore, the total TDOA is 50 time units. The TDOA peak is

clearly seen at the high SNR of +7dB and +3dB. At OdB SNR,

noise peaks exceed in amplitude the true TDOA peak causing an

incorrect estimate if one was selected.
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normalized FFT correlation: channel I vs channel 2
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Figure 7. Normalized frequency domain based crosscorrelation.
SNR +7dB.

normalized FFT correlation: channel I v channel 2
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Figure 8. Normalized frequency domain based crosscorrelation.
SNR +3dB.

Visually estimating the location of the peak with the

maximum amplitude in the output of the correlator is a easy

task. The decision rule states that the point with the maximum
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normalized FF' correlation : channel 1 vs channel 2

0.31- OdB SNR

3 0.2-

E

* I

0 L 100-100 -50 0 50 100

time lag

Figure 9. Normalized frequency domain based crosscorrelation.
SNR OdB.

amplitude is selected as the TDOA estimate, provided the

amplitude exceeds a predetermined threshold.

When many blocks of data must be processed, visual

inspection of the correlation output is not possible. Chapter

V discusses the design of a threshold for automated data

processing.
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IV. NOISE AND SIGNALS IN RZCZIVER

A. NOISE AND SIGNALS IN THE RADAR DETECTOR

The purpose of a radar receiver is to process and detect

the reflected energy from a target being tracked by the radar.

An I/Q demodulator is assumed in the radar receiver, located

after the last intermediate frequency (IF) amplifier and prior

to the video signal display. Data to be processed for TDOA can

be obtained from three locations on the I/Q demodulator. These

locations include the envelope output, the envelope squared

output and the I/Q channel data.

White Gaussian distributed noise is assumed to be added to

radar pulses during their transmission through the atmosphere

and reception by the receiver. This noise contributes to the

degradation of the SNR and is caused by fluctuations in the

target radar cross-section and the loss of signal energy due

to the propagation distance between the target and the

receiver.

At typical radar frequencies the front end amplifier of

the radar receiver contributes to this noise power. The noise

power for a thermally noise limited receiver is defined as No,
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No - k TY. B

where k = Bol tzman 's cons tan t
B = IF bandwidth

(22)
Tsy s = Tar +To(

Tar = receive antenna temperature
T. = effective noise temperature

of the receiver

The total noise is modeled as zero mean Gaussian distributed

noise with a probability density function (pdf) of

Px) X1 e2 (23)

where O2 is the noise variance due to all noise sources (i.e.,

receiver front end, transmission noise).

For an operational radar, either a pulsed signal plus

Gaussian noise or Gaussian distributed noise alone is assumed

at the input of the I/Q demodulator. The probability

distribution of the demodulated signal is dependant on which

of the three outputs of the I/Q demodulator is used.

1. Coherent detection

If the exact frequency and phase of the received pulse

burst is known, and matches the frequency and phase of the

local oscillator in the receiver, then the signal can be

coherently detected. Coherent detection simplifies the

probability description of the signal and noise at the output
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of the I and Q channels. The I and Q sequences have an

independent Gaussian distribution, and can be described as

I,Q - N({m.(n) ,mQ(n) ) ,o 2 ) (24)

where m1 (n) , m0(n) = I and Q mean values respectively
02 = noise variance due to all noise sources

Both the I or Q channel can be processed using the correlation

algorithm followed by threshold detection.

Due to the passive nature of signal reception and

demodulation, the exact frequency and phase of the received

pulse burst are not available at the receiver. Therefore,

coherent detection is not feasible for TDOA estimation.

2. Envelop. Squared Detection

For a zero mean Gaussian distributed noise input to

the I/Q demodulator, I and Q2 each have a chi-squared

distribution with one degree of freedom. Their pdf's can be

described by

py(Y) = 1 e-Y/2o, for y a 0

= 0 for y < 0 (25)

where 02 = variance of I and Q
y = 12 or Q2

The envelope squared output is the sum of 12 and Q2 and is

therefore chi-squared with two degrees of freedom. This pdf

can be described by
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z()=- Z10 for z >: 02o1) (26)

where z = 12 + 0 2

Envelope squared detection is attractive because the Hilbert

transform can be used to enhance the TDOA peak in the

correlator's output. Unfortunately in a low SNR environment

the noise power will also increase as the noise contribution

is squared.

3. Znvelope Detection

A common form of receiver demodulation at IF

frequencies is the envelope detector. For all simulations in

this thesis, envelope detection will be assumed. The output of

the envelope detector is the modulation envelope of the

received pulse burst. For Gaussian distributed noise at the

input to the I/Q demodulator, the noise at the envelope output

is Rayleigh distributed with pdf given by

U2

pu(U) .I-e 20, u > 0

0 O, otherwise (27)

where 02 = variance of Gaussian noise

For a pulsed sinusoid plus Gaussian noise at the input to the

I/Q demodulator, the pdf of the envelope at the output is

Rician distributed. The Rician pdf is given by
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- (r2 -A 
2
)

PR20) 01 rA0

= 0, otherwise (28)

where A = amplitude of received sinusoid
a2 = variance of Gaussian noise

where 10 (z) a ez cos( ) dO

(29)

and I,(z) = modified Bessel function of the
first kind of zero order

Figure 10 shows a block diagram of the I/Q demodulator and the

various pdfs in the radar receiver.

B. ENVZLOPZ COR3ZLATION OF RAYLEIGH NOISE

Rayleigh distributed noise is produced at the output of

the envelope detector under noise only conditions. This noise

is then processed by the correlator during the TDOA estimate.

In all follow on discussions and simulations, the envelope

processing scheme is used.

The autocorrelation of Rayleigh noise as discussed earlier

produces a large triangular bias in the output which decreases

as the time lag increases. This bias is produced by the dc

component of the Rayleigh distributed noise.

This triangular function contains no information relative

to the TDOA estimate. The large numerical values in the bias

can potentially limit the dynamic range in the FFT based

correlation. A constant, detection threshold cannot be
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Figure 10. INQ demodulator i.n the radar receiver.

implemented at the output of the correlator with this

triangular function present. For these three reasons, it is

advantageous to force the Rayleigh or Rician distribution to

have a zero mean. This will remove the triangular bias formed

by the correlation process. This modification of the received

pulse burst does not degrade the TDOA estimate. For all

realizations (i.e., blocks of data), the dc component of the

Rayleigh noise will be removed.
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1. Shifted Rayleig1k Noise

Forming a Rayleigh distributed time series x(n) and

subtracting its expected value produces a shifted Rayleigh

sequence. This algorithm is described by

x, (n) =x(n) aI
-12 (30)

where x, (n) - shifted Rayleigh noise sequence
a a Gaussian noise standard deviation

The shifted Rayleigh time series has a zero mean. The new time

series and the corresponding time domain based autocorrelation

function are shown in Figure 11.

(a) (b)

Figuze. 11. (a) Shifted Rayleigh time series. (b) Normalized

shifted Rayleigh time domain based autocorrelation.

Histograms of a Rayleigh pdf and a shifted Rayleigh

pdf are shown in Figure 12. Clearly, the effect of removing

the dc term from the Rayleigh distributed time series creates
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Figure 12. (a) Rayleigh pdf. (b) Shifted Rayleigh pdf.

an autocorrelated output that does not have the limiting

triangular bias. The impulse at zero time lag dominates the

correlation output. A constant detection threshold, at least

over a small number of range bins, could be implemented with

this type of correlation output.

2. Frequency Domain Based Correlation of Shifted Rayleigh
Noise

The frequency domain based autocorrelation of x, (n) is

now examined. Sequence x,(n) is zero padded as described in

Equation 21. A frequency domain series is created using the

FFT as described by Equation 18. The autocorrelation estimate

is derived using Equation 19 and is plotted in Figure 13. The

results of frequency domain based autocorrelation are very

similar to the results of time domain based autocorrelation

using shifted Rayleigh noise.
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normalized shifted Rayleigh spectral autocorrelation
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Figure 13. Normalized frequency domain based autocorrelation.

3. Spectral Interpolation

With the incorporation of the FFT in modern radar

receivers, it is possible that the received pulse burst has

been transformed into frequency data as a byproduct of

detection. Processing time would be lost in converting this

data back into a time series to be correlated. Of course,

there is no guarantee that the dc component has been removed.

In this section an algorithm is given to perform frequency

domain based correlation on a Rayleigh distributed noise

sequence while avoiding the triangular correlation bias

created by the (possible) dc component.

A Rayleigh distributed noise series x(n), N points

long, is transformed into an ordered sequence of N complex

coefficients using the FFT algorithm. In general, a sequence
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X(W) of coefficients is indexed from zero to N-1 and is

described by

X(k) = FFT I x(n) }, 0 k N-1 (31)

where k = frequency index

The FFT creates the zero indexed term X(0) by summing all the

elements in x(n). X(0) is real and can be viewed as the dc

component of x(n). By removing the X(0) coefficient from the

frequency sequence we have in effect removed the dc bias from

the time series x(n). At this point, the modified Fourier

transform X(k) approximates the DFT of a shifted Rayleigh

series.

Time domain correlation of an N point series produces

2N data points. Frequency domain based correlation of an N

point sequence produces N data points. To force frequency

domain based correlation to equal time domain based

correlation (i.e., avoid circular correlation), the number of

terms in the frequency series must be doubled. The frequency

series is expanded by storing each pair of complex frequency

coefficients at a location twice the value of the original

index.

As a first approximation, the data points between

adjacent coefficients are linearly interpolated in the

expanded array. Figure 14 illustrates the effect of FFT
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interpolation and the zeroing of the dc terms. Correlation

results as described by Equation 19 are shown in Figure 15.

Re{ Xkj } or im{ X(K

X(-2) X(-1) X() X(2) M /2)

-N/2 -4 -3 -2 -1 0 1 2 3 4 N/2

i = in!e,volated coefficient

X( I = Forier coefficient

Figure 14. FFT interpolation, and zeroing of the dc
coefficient.

-- nmdd MFT 2N mw*okwd mawmobwnm

aL2 -

-4560 -1S,0 o&- ism 5
fte bg

Figure 15. Normalized frequency autocorrelation through
interpolation.

35



Clearly, the triangular bias in the correlation output has

been removed. A small impulse at a time lag of -N is observed,

which can be disregarded.

For block processing, typically only correlation

products within ±10% of the zero time lag position are

considered to be statistically reliable. Therefore, the TDOA

estimate is formed within this correlation band. The impulse

at -N falls outside of the TDOA evaluation area and will not

cause a false detection.

C. CORRELATION O PULSES IN ADDITIVE RAYLEIGH NOISE

Time domain based correlation of a pulse train in additive

Rayleigh noise should produce the same result as frequency

domain based interpolation followed by an equivalent

correlation. A comparison was performed using a 50% duty cycle

pulse train in additive shifted Rayleigh noise.

Time correlation was performed on the pulse burst. The dc

component of the noisy pulse train is removed forming a zero

mean signal. The time domain based autocorrelation of this

sequence is shown in Figure 16(a).

The pulse burst was also transformed into the frequency

domain using the FFT with the dc component intact. N Fourier

coefficients are expanded and the X(0), X(±I) coefficients

zeroed out. The sequence is correlated after interpolation

using Equation 19 and plotted in Figure 16(b).
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(a) (b)

Figure 16. (a) Normalized time domain based autocorrelation.
(b) Normalized frequency domain based interpolai ion and
autocorrelation. Zero time lag between each channel.

Clearly, the two correlation algorithms produce similar

outputs. Both have a dominant p6'k in their output for TDOA

estimation. Frequency domain based correlation displays a

exponential decay of the sidelobes about the main peak. This

effect is not observed in time autocorrelation, and is caused

by the first order interpolation used in the frequency domain

based method. A more robust interpolation algorithm will

eliminate the exponential decay, yielding the desired linear

decay.

Next, time and frequency domain based crosscorrelation are

performed on two pulse sequences. One pulse sequence lags the

other by 20 units. Both time and frequency domain based

crosscorrelation of the two sequences are plotted in Figure
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17. Clearly, both correlation algorithms produce a peak at 20

units. The nonlinear decay of the sidelobes surrounding the

dominant peak is again seen in frequency domain correlation.

normalized time based crosscortelaun normalized spectral ased crosscorrelaton

0.5 01 -

.100 -1 0 100 200 20 1,00 0 100 200

imne lag time lag

(a) (b)

Figure 17. (a) Normalized time domain based crosscorrelation.
(b) Normalized frequency domain based interpolation and
crosscorrelation. 20 unit time lag between each channel.

In summary, the frequency domain based interpolation and

crosscorrelation algorithm produces an output comparable to

time domain based crosscorrelation. It offers a method to

correlate pulse bursts collected in the frequency domain.
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V. THRZSHOLD DESIGN FOR ENVELOPE CORRELATION

A. INTRODUCTION

A threshold at the output of a correlator is used to

estimate the location of a TDOA peak in a constant false alarm

rate (CFAR) receiver. The value of the threshold is a function

of the correlation output mean and variance.

B. CORRLATION OUTPUT AND CONSTANT VARIANCE

If the variance of the correlator, when driven by two

signals at the input, maintains a fixed value about some mean,

a constant threshold above the mean can be used. This allows

the design of a constant false alarm rate detector. The

largest correlation peak that also crosses the threshold is

defined as the TDOA estimate. The constant threshold design is

the easiest to implemeir.

C. COREZLATION OUTPUT AND TRIANGULMLY SH]LPD VARIANCE

The crosscorrelation of two zero mean noise sequences with

the same number of data points, produces an output whose

variance has triangular form. Hence, a constant detection

threshold is not easily implemented. Instead, a threshold must

be designed that has a slope that matches the slope of the

correlation output. The design of a sloping threshold is
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difficult, particularly if the slope of the correlation peak

changes with time (i.e., changing noise environment).

A solution is to mathematically force the triangular

correlation variance to be flat. This is done by using a

bowtie correction of the form I/ (N-I ) 1/2 . A bowtie correction

normalizes the correlation output to have a constant (lag

independent) variance. This design suffers from time changes

in the correlation output forcing the bowtie correction to be

recalculated. Note that the amplitude of the TDOA peak will

itself be dependant on the type of correction to the

correlation output.

D. TBZSOLD BASED ON Z O LhG

The zero lag threshold method uses the variance of the

zero lag correlation output to calculate a constant detection

threshold. This is indicated in Figure 18.

The correlation output becomes statistically less reliable

the further removed the correlation products are from the zero

time lag position. To use correlation intelligently, the

correlation output is typically examined ±10% of the distance

from the zero time lag position. Consequently, only

correlation output ±0.lN from zero time lag will be used in

TDOA estimate simulations.

The detection method in this thesis uses a constant

threshold against the correlation output. The fixed threshold
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Figure 18. Correlation output with zero lag threshold.

was selected because the correlation output variance is, to a

first approximation, nominally flat within the +0.1N boundary.

The detection scenario that drives this thesis defines a

minimum radar pulse width of one microsecond (gsec) and a

burst length of four millisecond (msec). A 50% duty cycle

radar pulse is assumed. There are 2000 pulses per burst, which

when correlated, will generate an output that is 8000sec

(±4000ILsec) in length. If ±10% of the correlation output

around zero time lag are compared to the threshold value,

±400gsec will be tested. For radar pulses traveling at the
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speed of light, a maximum distance of ±120km is therefore

examined to form a TDOA estimate.

Correlation values at lags -0.1N to 0.1N will be compared

in magnitude to the zero time lag based calculated threshold

value.

Z. TRZSHOLD CATULATION FOR CFAR

The detection threshold is calculated using the output

terms of the crosscorrelation algorithm when noise only is

injected into the correlator. For convenience, Equation 8 is

repeated here,

I-ill-ir (1) = i 1

--o (32)

x. and yl..1 are zero mean Rayleigh (shifted)
distributed noise sequences

The correlation function at all lags of interest is thought to

be Gaussian distributed. According to Equation 32, every

estimate is the sum of a fairly large number of products

(i.e., central limit theorem) . The average value of the

correlation output between the ±O.1N endpoints is

2a1 + r,(1)t -2a I _-

(33)
where a = number of data points between the

0 and 0. 1N lag posi tions in the
correlation output .

The variance of r,,(l) is calculated from
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a 21 (r.'Y~ _ 2 (34)
t 2a + 1 1--a

For Gaussian distributed noise the probability of false alarm

(Pf,) is a function of the detection threshold

-X21 0Pfa- fe 2tdx

-2-Ao Q 7 (35)

where T = detection threshold

For a given P,, the threshold can be calculated from

T = erfc -1 (Pfa) at
(36)

where erfc = complementary error function

Equation 36 relates the threshold to the Gaussian distributed

noise variance.

F. VERIFICLTION OF CIAR THRESHOLD AND ROC CURVE

Using the above equations, thresholds were calculated for

the time correlation detector given in Equation 32 for three

different P ,'s. A MATLAB simulation was performed to compare

the measured false alarm rate of the time correlation detector

to the theoretical false alarm rate.

1. P. Simulation

Two 100 point sequences of zero mean Rayleigh noise

were injected into the correlation detector. The output of the

correlation detector between the -0.1N and +O.1N lag points
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was compared to the calculated threshold to measure the false

alarm rate. The number of points in the correlation detector

output that exceeded the threshold for a given P, were

recorded. The experimental P. is given as the ratio of

improper threshold crossings to the total number of monitored

range cells of the correlator output (see Table 1). For each

P., 500 realizations were performed. Both theoretical and

experimental results are listed.

TABLE 1

THEORETICAL PROBABILITY OF FALSE ALARM

Simulation # P,=O.01 P0.=0. 001 P,.=O. 0001

1 0.0100 0.00076 0

2 0.0099 0.00090 0

3 0.0110 0.00085 0

The data in Table 1 show that a detection threshold

can be established for a correlation detector, using the

assumption of a Gaussian distributed output for P,,'s of 0.01

and 0.001. For the lower Pf. value of 0.0001, the threshold

calculation fails, but in a positive sense. The measured Pf.

of 0 is below the theoretical P,. of 0.0001. Either the

correlation variance is smaller than Equation 36 predicts, or

more terms must be summed in the correlation output to better
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approximate the Gaussian pdf as indicated by the central limit

theorem.

2. TDOA Simulation

The output of the envelope detector will either be

Rayleigh or Rician (non-central Rayleigh) distributed. In

those portions of the data where there is no signal energy,

the output will be Rayleigh distributed. Where the signal is

present, the envelope detector output will be Rician

distributed.

The purpose of the time domain based correlation

detector is to measure the TDOA of pulsed sequences embedded

in Rayleigh noise. Noise in low SNR environments will mask the

TDOA peak. A MATLAB simulation was performed to examine the

performance of the correlation detector in a decreasing SNR

environment.

Two pulse bursts embedded in additive Rayleigh noise

were created. The second pulse burst lagged the first by three

time units. Each pulse burst is a sequence of ten pulses, each

having a period of ten units. Each pulse in the burst had a

50% duty cycle.

The SNR established the amplitude relationship between

the noise and signal sequences. First, two sequences of zero

mean unit variance Gaussian distributed noise were created.

Rayleigh noise was generated from the two Gaussian sequences.

The Rayleigh noise had a mean of 1.2533 and a variance of
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0.4292. The theoretical second moment of the Rayleigh noise is

two and was verified in the MATLAB simulation. The second

moment is defined as the average power of the Rayleigh noise.

The amplitude of the nonzero elements in each pulse burst was

then scaled to meet the desired SNR, using the measured

average power of the Rayleigh noise.

A detection threshold was calculated based on shifted

Rayleigh noise using Equation 36 where a2 was assumed to be

known (i.e., simulation information). In practical

applications, a2 would be estimated from the data. The SNR of

the two bursts were varied from 0dB to 18dB in the different

simulations. For each SNR, the two sequences were correlated

using Equation 32.

Graphs of the correlation output for a SNR of 1dB are

given in Appendix C for Pf.'s of 0.01, 0.001, 0.0001 and

0.00001. The threshold, which is a function of the PF, and

noise variance, is shown to increase with decreasing P,..

The correlation peak at a time lag of three was the

correct TDOA estimate. If the maximum correlation peak in the

output was the third lag point, a correct TDOA estimate was

obtained. For each SNR, 30 TDOA estimates were made. The

correlation function output 100 data (lag) points per TDOA

estimate. The TDOA estimate was made on ±10 data points on

each side of the zero time lag position in the correlation

output. The percent correct TDOA estimate for each SNR was
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calculated and is presented as a receiver operating

characteristic (ROC) curve in Figure 19.

The ROC curve shows that as the SNR increases, the

performance of the correlation detector increases. The

performance of the correlation detector in Figure 19 can be

improved if multiple sequential looks at the same SNR were

allowed.
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SNR for time domain based correlation detection.
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VI. rrT ERROR ANALYSIS

A. INTRODUCTION

This chapter discusses several sources of processing

errors occurring within the FFT, and the effect of these

errors on the FFT output signal-to-noise ratio.

The computation of a FFT using fixed point arithmetic,

generates internal processing errors. These errors are due to

the fixed number of bits in the trigonometric look up table,

the truncation of arithmetic results during addition and the

scaling of results during the individual butterfly

calculations.

The error sources can be modeled as independent additive

noise components at the output of the FFT. Their net effect is

to reduce the ideal SNR at the output of the FFT.

Each of these processing error sources will be described

below. The material in this chapter borrows from [Ref. 7].

B. COSI I/SIXK TABLE NOISE

The computation of a butterfly algorithm in the FFT

involves multiplication by the complex coefficient (twiddle

factor)
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I 221Re =cos(m -M j sin(- m) (37)N N
- Wm

A FFT butterfly is shown in Figure 20.

+

ON-- B, rn+1

2 -T m

Wm=e (m

rigure 20. FFT butterfly calculation.

These trigonometric coefficients are precalculated, quantized

to (B) bits (where B is the size of the computer word

including sign bit), and stored in memory for future table

lookup during the FFT processing. The coefficients W° - I and

W1 4 - -j can be obtained in an exact form and therefore do not

contribute to the quantization noise. Quantization of the

other (twiddle) coefficients stored in the sine and cosine
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table introduce noise into the output of the FFT. The noise

power created by truncation of the sine and cosine

coefficients is defined by [Ref. 7] to be

a 2 
1 2-2B

W 3
(38)

where a2 = trigonometric noise power
B = number bits in computer word

C. TRUNCLTION NOS

The DFT of a finite duration sequence {x(n)) is defined in

Equation 18 and is repeated here for convenience

N-1 2WX (k) = E x (n) e A k:.N1(9

n-O

The product formed requires four real multiplications because

both the exponential and the input data are complex numbers,

B bits in length. Each multiplication can produce a result of

2B bits which must be truncated from 2B to B bits, hence there

are four quantization errors for each complex valued

multiplication. The four quantization errors can be described

as four independent noise sources. The truncation noise power

is defined by [Ref. 7] as
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2 {-12-2B + 12-2B)
3 4 (40)

where oT truncation noise power
B = number of bits in product after truncation

D. SCALING NOISE

The FFT as an algorithm processes a data vector of length

N by successive passes at the vector. During each pass, the

algorithm performs N/2 butterfly operations. Each butterfly

retrieves two complex numbers from memory, performs the

butterfly computation and returns two complex numbers to the

same memory address. The complex numbers returned to memory by

the butterfly can have a greater magnitude than the two

complex numbers initially fetched from memory by the

butterfly. In order for the results of the butterfly operation

to fit in the fixed word length of the memory of the computer,

the results must be truncated (scaled). Scaling is performed

by dividing by two the entire data array, and is implemented

in software by a right shift and an increment of the arrays

exponent register.

During the (m+l) pass of the data, the butterfly algorithm

selects two data points A(m) and B(m) and returns to memory

A(m+l) and B(m+l). The truncation error results from the

addition of two numbers of like sign in the upper part of the

butterfly algorithm or the subtraction of two numbers of
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opposite sign in the lower part of the butterfly algorithm.

The input to the butterfly is fixed to have maximum real and

imaginary values of ±1. The output of the butterfly is fixed

to have a maximum value of ±2, double the input value. To

prevent overflow of the butterfly output, either a prescale by

1/2 is required prior to entering the butterfly or an extra

bit must be available in memory to accommodate the possible

gain of two.

One method, automatic prescaling, truncates the least

significant bit of the butterfly output and represents

processing noise. In the case for which no scaling is

necessary for the pass, this truncation represents significant

processing error (noise).

A second method, data dependent scaling, is performed only

if a butterfly in the data pass overflows without scaling. If

any word in memory has an overflow bit set, all words are

shifted right as they are fetched from memory for the next

pass of the FFT. The total number of right shifts, p, executed

during the FFT process is used at the output of the FFT as a

scale factor of 2P. This scale factor is used at the output of

the FFT so that the total processing gain is maintained.
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The noise power created by the scaling of the data is

defined by [Ref. 7]

2 1( 2-2 (-) 2(-1)
73 4 (41)

where V2 scaling noise power

Z. OUTVVTI SIGNAL TO VOIS3 PRITIO

Fi.gure 21 shows an error model of a butterfly in an FTT.

2Tf

Figure 21. ITT error model.
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The input data terms to a butterfly can be described by

(m) =A(m) + NA (m)
A(m) B B(m) + N.(m)

whereNA, N(42)
where NA, N = additive noise terms
A(m), B(m) = input data terms
A(m), b(m) - noise corrupted data

Without the effects of noise the butterfly algorithm produces

two outputs described by

A(ml) = A(m) + W(m)B(m)
B(m~l) = A(m) - W(m)B(m) (43)

where W(m) = twiddle factor

The error due to the A component will be calculated. The error

due to the B component is statistically equivalent to the

error in the A component. Including the effects of noise, the

output of the butterfly can be described by

(mre1) = (A(m) + NA(m) + q,(m)] + (B(m) + NB(m) +q,(m)]"
[W(m) + q.(m)] + q (m)

where q,(m) = scale noise
q.(m) = sine/cosine table noise
q,(m) = truncation noise (in multiply)

(44)

The total power at the output of the butterfly is then
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E[A(m+l) A*(m+l)} = E(A(m)A'(m} I + E{B(m)B'(m)} +
E{NA(m) N; (m)} + E(N1 (m) N; (m) +
E (q,,(M) q; (m) }+ E [qs(M) q; (M) }+ (5

E{B(m)B*(m) }Etq,(m)q(m) } +
E{qT(m)q;(m)}

Redefining the terms of the total power leads to

E{A(m+1)A*(m+)} = S2 (m) + S2 (m) + NA(m) + NB(m) +
02(m) + S2(m) 0 2 (m) + 02 (m)

where S2 (m) = input signal power (46)

o2(m) = scaling noise power
2(m) = truncation noise power
02.(M) = sine/cosine table noise power

Combining like terms results in

E[A(m+l)A*(m+l)} = 2S 2 (m) + 2NA(m) + 2o(m) + (47)
S 2 (m) o02(m) + o2(m)

This equation describes the total power as a function of the

signal power and the individual independent uncorrelated noise

terms. The total power output from the butterfly can also be

described as a function of its input signal power and the

total additive noise power generated within the butterfly as

E(A(ml)A*(m+l)) = E{A(m l)A(m+l)} + (48)

E[NA(m+)l N; (m+l) (

Redefining these terms

EfA(m 1)A(m+1)) - 2 (m+1) + NA(m41) (49)
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Equation 47 and 49 are equivalent. The signal and noise power

for the (m+1) pass can be formed from those terms in the

proceeding pass

S 2 (m_1) + NA(m+l) = 2S 2 (m) + 2NM(m) + 2a (m) + (50)

Equating the signal terms in Equation 50 yields

S 2 (m+ l ) = 2S2 (m). (51)

Equating the noise terms in Equation 50 yields

NA(m~l = 2NA2(m) + 2o(M) + S2(m)o 2 (m) + o2(m) (52)

Equation 51 can be rewritten to show how the input signal

power increases as a function of m as it passes through the mh

stage of a butterfly of an FFT

S 2 (m) = 281S2,
(53)

here we modeled S 2 (0) = S 2 .

The signal power input to the butterfly is defined as

S2 = 1 2-2(Bb) (54)

Rewriting Equation 52 to include this exponential increase of

S2 (m) gives
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222 22(M) + 02(M). (55)
N (m+l) = 2N (m) + 2o(m) + 2 (

Equation 55 shows the relationship between the noise power of

a butterfly stage as a function of the noise power from the

proceeding butterfly stage. The noise and signal power can now

be calculated using Equations 53 and 55 for m passes through

a butterfly. Once calculated, the signal to noise ratio can be

formed.

F. RIGHT JUSTIFIZD DATA

The length of a word in the computer is defined to be 16

bits (B) and accepts a 12 bit (b) data word. Right justified

data places the least significant bit (LSB) of the b bit data

word in the LSB of the B bit processor word. The output noise

to signal ratio is now calculated for ten passes through a

butterfly using right justified data. The following

assumptions are used in the calculation;

1. The input signal is incoherent.

2. Scaling is performed every other pass after the most

significant bit (MSB) of data reaches the next to MSB

of the processor.

3. The first two passes do not use the trigonometric

table.

After the tenth pass (i.e., FFT size of 1024), it is shown

(Appendix D) that the noise to signal power is
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2 2 ~ 3. (56)
(10) _ + 4 0w + - + _ (56)

5 S W 4 S 2  5 1 S 2

B and b are previously assumed to be 16 and 12 bits in length

respectively. Substituting these values into Equation 56

12-32 7 2-32 7 230

N (10) 3 + 4.12-32 + 1 12 + 1 -42 (57)
S 2  3 124 51 1 2 -e9 9 9

The noise to signal ratio reduces to

NA (10) -67. 5 db - 95. 1 dB -71 1 dB -79. 1 dB (58)s2

= input trig truncation scaling
noise noise noise noise

Clearly, the dominant degradation noise is the truncation

table noise (-71.IdB), followed by the scaling noise to signal

ratio (-79.1dB) . For right justified data, the signal to noise

ratio is calculated to be 65.71dB.

G. L"T JUSTZIZD DATA

Left justified data places the most significant bit (MSB)

of the b bit data word in the MSB of the B bit FFT processor

word. The output noise to signal ratio is now calculated for

10 passes through a butterfly for left justified data. The

following assumptions are made
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1. The signal is incoherent.

2. Data is left justified on input and scaling is

performed every other pass starting with the first

pass.

3. The first two data passes do not use the

trigonometric table.

It can be shown that after the tenth pass through the

butterfly that the noise to signal ratio is

NA (10) = -n + 4o 2 + -±T+ - a (59)2  s2  V 4 S2  s2

B and b were previously assumed to be 16 and 12 bits

respectively. Substituting these vaiaes into Equation 59 we

obtain

2 12-261 7 -2_-32 2 7 230
--A(10) = 3 + 412-32 + 4 12 + 24 (60)
s2  12-2 3 122 12_2

9g9 9

The noise to signal ratio reduces to

2N- (10) = -67.5 dB -95.1 dB -89.1 dB -77.1 dB (61)

= input trig truncation scaling
noise noise noise noise

Clearly, the worst noise contribution to the SNR is the

scaling noise (-77.1dB), followed by the truncation noise (-

89.1dB). For left justified data, the signal to noise ratio is

calculated to be 67.0dB.
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Further analysis shows that for large FFT's (i.e., in the

range of 215 and above), the trigonometric table noise is the

dominant noise source. A simulation was performed using an

AMDAHL machine to examine the error generated in performing a

FFT and an iFFT. Figure 22 shows the experimental setup.

AMDAHL Machine

Lata Da Ta
F F1 FF F T L

compare

save error in table

Figure 22. FFT processing error flowchart (Ref. 81.

The error that was generated was tabulated. Figure 23

illustrates the error as a function of FFT length.

H. 8UN3A"

For either left or right justified data, the dominant

noise at the output of the 1024 point FFT is the scaling or

truncation noise. The SNR at the output of the FFT, for left

justified data is 67.0dB and exceeds the SNR for right

justified data which is 65.71dB. Clearly, left justified data

maximizes the computational SNR at the output of the FFT for
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MAXIMUM ERROR IN SINGLE
PRECISION FFT

it 30--
/

5.:000

.00----

60.001---

0 40.000--

a: 3 00o-

II1 ... I 1 10 -1 1

O.00 T

0.

0.01

0.001--

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

FFT LENGTH

Figure 23. FFT error as a function of transform length
[Ref. 8].
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the values of b, B and N used in the above examples.

For a right justified data set transform size of N=213

(8192 points), the noise to signal ratio after the 13th pass

can be written

N21 3 N + (215 +23 212)$20 + 2047o + 170o (62)
S 2  213S 2

This equation reduces to

2 2 22(13) - + 5.5o + 1 -- (63)

S2  S 2  4 S2 48.2 S2

Comparing Equation 56 to Equation 63, we see that by

increasing the transform size from 210 to 213 increases the

noise to signal ratio. The trigonometric table noise is

increasing faster than either the scaling or truncation noise.

The signal to noise ratio is reduced, from 65.71dB to 65.68dB.

As the transform size is increased to accommodate larger data

sets, the trigonometric table noise becomes the dominant error

term.
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VII. SUMWARY

A. CONCLUSIONS

A frequency domain based algorithm was developed and

tested to estimate the differential arrival time of a pulsed

radar signal collected by two passive sensors. For

convenience, the actual implementation was performed through

time domain processing even though frequency domain processing

is advocated. The performance of the algorithm is

characterized by a ROC curve as a function of SNR. For 3dB SNR

and a Pr, of 0.01, the probability of making a correct TDOA

estimate exceeds that of an incorrect estimate for a single

look. At 18dB SNR, the probability of making a correct TDOA

estimate is 100 percent for all P .'s. If multiple looks (i.e.,

multiple bursts) are allowed, the probability of making a

correct TDOA decision at each SNR will increase.

An I/Q demodulator is assumed in the radar receiver. The

pdf of the signal driving the correlation detector is

determined from where it is obtained in the I/Q receiver. The

pdf, depending on selection, will be zero mean Gaussian versus

non-zero mean Gaussian, or chi-squared versus non-central chi-

squared, or Rayleigh versus Rician (non-central Rayleigh).

This thesis assumes an envelope detector at the output of the

I/Q demodulator. The envelope detector output has a Rayleigh
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or Rician pdf and drives the correlation detector. The

calculation of a CFAR threshold assumes a Gaussian pdf at the

output of the correlation detector. For small time lags,

summation of the output of the correlator may produce a

probability distribution that deviates from Gaussian. This

deviation would produce a biased threshold calculation. To

minimize the bias, a sufficient number of terms must be summed

at the output of the correlator to allow the Gaussian

approximation.

If the received pulses are collected in the frequency

domain, a spectral domain based correlation algorithm can be

implemented. An algorithm is given in this thesis.

For any digital signal processing algorithm that uses the

FFT, processing errors must be considered. For large transform

sizes the trigonometric noise power dominates. The length of

the trigonometric coefficient word affects the degradation of

the SNR at the output of the FFT. The larger this word the

smaller the noise power. For a given transform size, left

justified data will have a higher output SNR than right

justified data.

For a correct TDOA estimate, the correlation algorithm

requires the reception of the leading pulses in the radar

pulse burst. If the pulses are received in an adequate SNR,

the correlation algorithm will produce a well defined peak

allowing the TDOA estimate. Should the environment degrade the
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received signal (i.e., destructive interference due to

multipathing, weather or terrain), the correlation algorithm

should be discarded in favor of the traditional angle of

arrival (AOA) algorithm (i.e., maximize received energy).

If the radar uses a staggered PRF, the reception of the

first pulse or several pulses has little impact on the

position of the correlation peak. Under this condition, the

TDOA algorithm is superior to the AOA algorithm.

B. RZCOMNNDATIONS

A ROC curve should be constructed for the correlation

algorithm used in this thesis for multiple TDOA looks. An

intensity display could be designed that would plot as a

function of time (i.e., snapshots), those lag points chosen as

TDOA estimates. Patterns displayed on the intensity plots

would allow the user to visually determine the correct TDOA

(i.e., incoherent averaging).

The performance of the spectral domain based correlation

algorithm developed in this thesis must be further quantified.

Sets of ROC curves should be obtained for different SNR's

(i.e., SNR variations between channels).

The simulated FFT error graph should be validated by

measuring the error performance of a dedicated properly

dimensioned FFT.
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APPENDIX A. CORRELATION MAN AND VARIANCE

Two zero mean, independent time series are the inputs to

a correlator. This appendix will derive the expected value and

vaiiance of the crosscorrelation function output. In this

thesis, the noise is zero mean (i.e., shifted) Rayleigh noise.

The crosscorrelation function r,(l) is defined in Equation

8 and is repeated here for convenience

N-i-111
r,(1) = E x(i)y(i + ) (64)

1-0

A. EXPZCTD VALUE

x. and y± are assumed to be independent, zero mean

sequences

E{x) - E(y) = 0. (65)

The expected value of r,(l) is

f-i- III N-1-Ill

N-i- I-l -l-

=-- EixI~(66)

1-0

=0
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B. VARIANCZ

The random variable z has a variance defined to be

O= E{ (z - E{z}) 2}

because E(z} = 0 for a zero mean sequence, (67)

20z = E{z 2}

The variance of the crosscorrelation function ry(1) is then

N--Ill N-I-111 N-i-I
Or( --= Efry) = E{ ( xiY 1- 1)

2 } El E x.y 1, 1  xfyi,+}
1-0 1;o 1;o (68)

N-1-111 N-1-1l
= Et 'E 1  . 1- XjYj1 )."0

xjx, and y,+, y,+, are two groups that are independent of each

other. The expectation operation can be applied to each group

individually.

-- Il N-i-Ill
ar") T E{XiXj) E[y1 1.yLj. }  (69)

1-0 .

The two indices i and j define a matrix of values. Two

contributions have to be considered.

Contribution 1. When i-j the summation occurs along the

diagonal of the matrix. Only one summation is used and

essentially the terms are being squared. These squared terms

are not independent. To simplify the computation define m

equal to i and j
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N-1-111

C1  E E~x,1}Ety2.1 ) (70)
m,,O

Because x. and y. are zero mean sequences,

2

Eix,21 ao, Ety,2, 11 =(2
2 2 = C 2

and o x -- =

Substituting (2 into Equation 70

N-i-Ill -i-Ill
C 0 0 0=o4 E 1Ox y

m=O m

(71)-- o' [ N-l-ll) l]

- a4 (N-Ill)

Contribution 2. When i*j all the terms except those on the

diagonal are summed. These terms are independent. For i~j

-i-Ill -i-111

C2 = £f 1 EX)EyE1~y,)(2. ('72)

= 0, using Equation 65

Therefore, Equation 69 becomes = + C2  (73)

=7'(I- 111)
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C. CROSSCORRZLATION STATISTICS

Each data point output by the correlation function

represents a summation of terms. Using the central limit

theorem, the output of the correlation function i assumed to

have a Gaussian distribution.

In conclusion rx(1) - N(O, o'(N-111)

where N = Normal (Gaussian) distribution
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APPENDIX a. MATLAS CODE

A. USERS GUIDE

The frequency domain based correlation software given in

this appendix is written in Pro-Matlab (version 3.5h). All

simulations were run on a Naval Postgraduate School Sun work

station using a UNIX operating system.

B. CORRELATION MATLAB CODE

% Program Name FreqCorr7.m 12 May 91

clear
clg
clc

PULSE CORRELATION
Version 7.0

% 1. 1 Channel vs Reference Channel
or

1 Channel vs Second Channel.

% 2. Rician Signal and Rayleigh Noise pdf's
(Low SNR signals have power approximately 2.)

% 3. 0 dc Correlation. Subtract dc from both signals.

% 4. Normalize correlation output in Fourier domain.

% This MatLab program will either :
% 1. Correlate a received pulse sequence against a reference
% pulse sequence. The reference sequence parameters are
% specified by the user and are used to construct the
% sequence.

or
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% 2. Correlate two received pulse sequences against each
% other.

% Correlation of the pulse sequences is accomplished by
% multipling in the frequency domain one spectrum against
% the conjugate of the other spectrum. An inverse FFT is
% performed on the result to yield the time difference
% (TDOA) between the two sequences.

clc

echo on

% SELECT CORRELATION OPTION

Select either 1 or 2

% 1. Time delay in one receiver channel measured against a
reference signal.

% 2. Differential time delay between two channels.

echo off
option = input('Select correlation option 1 or 2 ;
clc

echo on

% Option 1 : Time Delay In One Channel

% Reference Pulse Train Parameter Selection.

echo off
if option-ll

wi-input( 'Pulse Width (seconds)
pr-input( 'Pulse Period (T seconds)
nu-input( 'Number of pulses in pulse train ');
NumberPointsRef-pr*nu;

end
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clc

echo on

% Delayed Pulse Train Parameter Selection
%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
echo off
dly=input('Channel 1 delay tau (sec.) of pulse train
wi2=input('Pulse Width (seconds) : ');
pr2=input('Pulse Period (T seconds) :
nu2=input('Number of pulses in Delayed Pulse Train
NumberPointsDel=(pr2*nu2)+dly; %calc. nmbr pts sig + delay

clc
if option==2
dlyCh2=input('Channel 2 delay tau (sec.) pulse train :
wiCh2=input('Pulse Width (seconds) : ');
prCh2-input('Pulse Period (T seconds) : ;
nuCh2=input('Number of pulses in Delayed Pulse Train : ');
NumberPointsDel2=(prCh2*nuCh2)+dlyCh2; %nmbr pts sig + delay
end

% Zero pad both sequences to N3=N2+N1-1. Must then make N3
% meet the simple formula N3 = 2^m to allow speedy
% computation of the FFT.
% WARNING : IBM 80286 MATLAB WILL NOT ALLOW VECTORS GREATER
% THAN 4000. So an input pulse train of 128 will exceed the
% system. Solution is to use the SUN workstation or 386/486.

if option--l
ZeroPadPoints=NumberPointsRef+NumberPointsDel-1;%N3=N2+Nl-1
for m-2:1:19; %2^(19) = 524288 point FFT max

if 2Am >- ZeroPadPoints,
ZeroPadPoints-2Am;
break; %when find a 2Am power, exit loop

end
end

end
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if option==2
ZeroPadPoints=NumberPointsDel2+NumberPointsDel-l; %N3=N2+Nl-1
for m=2:1:19; %2^(19) = 524288 point FFT max

if 2Am >= ZeroPadPoixts,
ZeroPadPoints=2 Am;
break; %when find a 2Am power, exit loop

end
end

end

%%%%%%%%%%%%%%% Create Reference Pulse Train %%%%%%%%%%%%%%
if optionl
ReferencePulse=zeros(1:ZeroPadPoints); %zero pad past pr*nu
for PulseCounter-1:pr:NuxnberPointsRef %steps of Ref. period

for CutUpPulse=O :pr;
if CutUppulse<=-wi

ReferencePulse (PulseCounter+CutUpPulse) =1.0;
end

end
end
Refdc=mean (ReferencePulse (1 :NurnberPointsRef));
ReferencePulse (1:NuzuberPointsRef) =ReferencePulse (1:NuxnberPoi
ntsRef) -Refdc;
end

%%%%%%% Create Channel 1 Delayed Pulse Train %%%%%%%%%%%%%%
DelayedPulseTrain-zeros (1:ZeroPadPoints) ;%0 pad past pr2*nu2
for PulseCounter- (dly+1l :pr2: (pr2*nu2+ (dly+l) ) ;%pr2*nu2=Nlbr

for CutUpPulse-0:pr2; %. .. .pts in Del. Pulse Train
if CutUpPulse<=wi2

DelayedPulseTrain (PulseCounter+CutUpPulse) =1.0;
end

end
end

if option-2
%%%%%%% Create Channel 2 Delayed Pulse Train %%%%%%%%%%%%%%
DelayedPulseTrain2-zeros (1:ZeroPadPoints) ;%0 padpast pr2*nu2
for PulseCounter- (dlyCh2+1) :prCh2: (prCh2*nuCh2+ (dlyCh2+l));

for CutUpPulse=0 prCh2;
if CutUpPulse<-wiCh2

DelayedPulseTrain2 (PulseCounter+CutUpPulse) =1.0;
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end
end

end
end

clC
echo on

% Signal to Noise Ratio Calculation
Define Rayleigh noise power to equal 2.

Rician pdf created for sinusoid + Gaussian noise.

echo off
SNR=input(' Desired SNR
NoisePwr=2; %rayleigh noise pwr =2

% Sum Channel 1 & 2 signals plus their initial delay.

SigEnergy-0; %initialize Channel 1 energy to 0
for index=l:NumerPointsDel;%sum over Ch. 1 delayed signal

SigEnergy=SigEnergy+((DelayedPulseTrain(index)).^2);
end

if option==2
SigEnergy2-0 %initialize Channel 2 energy to 0
for index=l:umberPointsDel2;%sum over Ch. 2 delayed signal

SigEnergy2-SigEnergy2+((DelayedPulseTrain2(index)).^2);
end
end

% Calc. Ch. 1 signal amplitude to meet required input SNR.

SNR10-SNR/10;
SNRLinear-l0ASNR10; %SNR in linear units
SigAmplitude-sqrt(NoisePwr*SNRLinear*NumberPointsDel/SigEner
gy);

if option--2

% Calc. Ch.2 signal amplitude to meet required input SNR.
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SNR1 0=SNR/ 10;
SNRLinear=1OASNR10; %SNR in linear units
SigAmnplitude2=sqrt (NoisePwr*SNRLinear*NurnberPointsDel2 /SigEn
ergy2);
end

% Create Rayleigh Noise matrix for Channel 1.

rand('normal');- %Gaussian mean=0, variance=1
for index=l NuzuberPointsDel,

GaussNoisel (index) =rand; %N (0,1)
GaussNoise2 (index) =rand; %N (0, 1)

end
RayleighNoise=sqrt ((GaussNoisel) . 2+ (GaussNoise2) .2)

% Create Rayleigh Noise matrix for Channel 2.

if opt ion=-2
rand('normal'); %Gaussian mean=0, variance=1
for index-i: NumberPointsDel2,

GaussNoise3 (index) =rand; %N(0, 1)
GaussNoise4 (index) =rand; %N (0,1)

end
RayleighNoise2-sqrt ((GaussNoise3) . 2+ (GaussNoise4) . A2);
end

% Make Rician amplitude of Channel 1 delayed pulse train
% and remove the dc component of entire signal.

SE=0;
for index-1:NumberPointsDel, %l -- > delay + delayed signal
if DelayedPulseTrain(index)--l %if one, make Rician

DelayedPulseTrain (index) =DelayedPulseTrain (index) .*rician (Si
gAmplitude) ;

SE= (DelayedPulseTrain (index)) . 2+SE;
end %end Rician modification loop

end
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SP=SE/NumberPointsDel;

%%%%%%% Add noise to Channel 1 Delayed Pulse Train%%%%
for index=l:NumberPointsDel, %l -- > delay + delayed signal
if DelayedPulseTrain(index)==O %no Rayleigh noise to signal

DelayedPulseTrain (index) =DelayedPulseTrain (index) +RayleighNo
ise (index);
end

end

%%%%% Remove dc component of Channel 1 Pulse Train %%%%
Chldc--mean (DelayedPulseTrain (1:NumberPointsDel));
DelayedPulseTrain (1:NuzberPointsDel) -DelayedPulseTrain (1:Nuxn
berPointsDel) -Chldc;

if option==2

% Make Rician amplitude of Channel 2 delayed pulse train
% and remove dc component of entire signal.

SE=O;
for index=l:NuznberPointsDel2, %I -- > delay + delayed signal
if DelayedPulseTrain2(index)==1 %if one, make Rician

DelayedPulseTrain2 (index) =DelphyedPulseTrain2 (index).*rician(
SigAmplitude2);

SE= (DelayedPulseTrain2 (index)) . '2+SE;
end %end Rician modification loop

end
SP-SE/NumberPointsDel2;

%%%%%% Add noise to Channel 2 Delayed Pulse Train %%%%%%%%
for index-1:NumberPointsDel2, %1 -- > delay + delayed signal
if DelayedPuls.Train2(index)-=O %no Rayleigh noise to sig

DelayedPulseTrain2 (index) =DelayedPulseTrain2 (index) +Rayleigh
Noise2 (index);
end

end

%%%%% Remove dc component of Channel 2 Pulse Train %%%%
Ch2dc--mean (DelayedPulseTrain2 (1 :NuzberPointsDel2));
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DelayedPulseTrain2 (1 :NunberPointsDel2) =DelayedPulseTrain2 (1:
NuinberPointsDel2) -Ch2dc;
end

subplot (221) %two rows, two columns
time=(O:1:ZeroPadPoints-1); %Start time axis at 0
if option==l

%%%%%%%%%%%Plot Reference Pulse Train %%%%%%%%%
plot (time,ReferencePulse);
title('Reference Pulse Sequence');
xlabel('time');
grid
end

%%%% Plot Channel 1 pulse train + Rayleigh/Rician noise%%%%
topDel=l. 1*max (DelayedPulseTrain);
bottomflel=1.1*min (DelayedPulseTrain);
axis(CO NumberPointsDel bottomDel topDelj)
plot (time,DelayedPulseTrain);
title('Channel 1 Pulse Sequence + Rician/Rayleigh Noise');
xlabel ('time');
grid

if option==2
%%%% Plot Channel 2 pulse train + Rayleigh/Rician noise %%%
topDel2=1.1*max(Delayed~ulseTrain2); %10 percent headroom
bottomDel2=l. 1*min (DelayedPulseTrain2);
axis([O NumberPointsDe12 bottomDel2 topDel2])
plot (time,DelayedPulseTrain2);
title('Channel 2 Pulse Sequence + Rician/Rayleigh Noise');
xlabel (' time'I);
grid
end

% Correlation

if option--i
fR-f ft (ReferencePulse);
fD-f ft (DelayedPulseTrain);
end
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if opt ion==2
fR=fft (DelayedPulseTrain);
fD=fft (DelayedPulseTrain2);
end

z=fD. *conj (ER);

%Calculate normalizing coefficient

Norml=O;
Norm2=O;
for k=l:1:length(fD)

Norml= (abs (ED (I)).',2) +Norml;
Norm2=(abs(ER(k,)) .2)+N~orm2;

end

Norml=sqrt (Normi);
Norm2=sqrt (Norm2);

NormCoeff=Norml*Norm2;
z=z. /NormCoeff;

z=z*length (ED);

ifftz=ifft (z);

magz-abs (ifftz);

%%%%% Flip vector for appearance%%%%%%%%
Topmagz- (length (magz) /2+1);
Bottommagz-length (magz) /2;-
magzLen-length (magz); %measure length of magz
Transmagz-[magz (Topmagz:magzLen) ,magz (l:Bottommagz)];

%%%%Make -time to +time axis %%%%%%%%
minustizue-- (length (Transmagz) /2);
posittime- (length (Transmagz) /2) -1;
timel- (uinustime:l1:posittime);

topmagzml.1*max(magz); %add 10 percent head room
axis([minustime posittime 0 topmagz]) %scale axis

subplot (212)
plot (timel,Transmagz);
title('FFT Correlation :Channel 1 vs. Channel 2');

79



xlabel ('time lag');-
grid
gtext ('+7dB SNR')

lj4print %Spanagel Room 427 Laserjet

axis((l 2 3 4]); %reset axis scaling

axis;

% Program Name : CorrPfaLoop.m 19 July 91

% Purpose :To compute the Pfa for Signal / Noise only for
% then correlation function. This program creates zero mean
% RAYLEIGH noise.

clear
clg
subplot (221)
rand ('normal'

PFA-1.0;- %will be divided by ten to start

for PFACOUNTER-1:1:4

PFA-PFA/l0; %Pfa - 0.1 0.01, 0.001, 0.001

for SNRO0:1:18 %outer loops through all SNR's.

Iterations-30; %30 data points per SNR point

for loop-1:1:Iterations %inner loop, creates groups of +-a

loop;
AboveThreshold (loop) -0;
BelowThreshold (loop) -0;
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Threshold (loop) =0;
MaxRxy (loop) =0;
RxyThreelag (loop) =0;

%%%%%%%%%%%% Set Parameters %%%%%%%%%%%%%%%%%%%%%%%%
N=100; %100 noise points, therefore 200 correlation points
a=10; %+- 10 % on either side of 0 time lag
Pfa=PFA; %Reestablish because Pfa destroyed each loop
P faDe fined=P fa;

%%%%%%%%%%%%% Make N points Noise %%%%%%%%%%%%%%%%%%
snrnoiseloop %call signal plus noise generation at a SNR

%%%%% Correlation of zero mean noise only for Pfa calcul. %%
MeanRayl=mean(RayleighNoise); %noise created in snrnoise.m
MeanRay2-mean (RayleighNoise2);
RayleighNoise-RavleighNoise-MeanRayl;
RayleighNoise2=RayleighNoise2-MeanRay2;

Rxy-xcorr(RayleighNoise,RayleighNoise2); %xcorr signal+noise
later

%%%%%%%%%%%%%%%%%% Compute t- %%%%%%%%%%%%%%%%%%%%%%%
t-0;
for i= (N-a) : 1: (N+a)

t=t+Rxy (i);
endt-t/ (2*a+l)

%%%%%%%%%%%%%%% Compute variance t %%%%%%%%%%%%%%%
Vart-0;
for i=(N-a) :1: (N+a)

Vart=Vart+(Rxy(i)-t) .^2;
end
Vart=Vart/ (2*a+1);

%%%%%%%%%%%%%%%%% Define Pfa %%%%%%%%%%%%%%%%%%%%
Pfa-Pfa*2; %multiply by 2
Pfa-l-Pfa; %subtract one
Threshold (loop) -inverf (Pfa);
Threshold(loop) -Threshold (loop) *sqrt (2) *sqrt (Vart); %mult by
the sqrt (2)

%%%%% Xcorr of signal + zero mean noise %%%%%%%%%%
Rxy-xcorr (DelayedPulseTrain, DelayedPulseTrain2);
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%%%%%%Compare +a to -a to Threshold %%%%%%
for i=(N-a) :1: (tb+a)

if Rxy (i) >=Threshold (loop)
AboveThreshold (loop)-'AboveThreshold (loop) +1;

else
BelowThreshold (loop) -BelowThreshold (loop) +1;

end

if Rxy (i) >MaxRxy (loop)
MaxRxy (loop) =Rxy (i);
SaveThreshold(loop) =Threshold(loop);
-%SaveVart (loop) =sqrt (Vart);

end
end

RxyThreelag (loop,)=Rxy (97);

end tend # Iterations loop

%%%%%%Count correct threshold crossings %%%%
CorrectTDOA=0;
for count-i :1: Iterations

if RxyThreelag (count) ==MaxRxy (count)
Correct TDOA-Correct TOOA+ I;

end
end
PercentCorrectTDOA- (CorrectTDOA* 100)/IIterations;

diary flag4
PercentCorrectTDOA
BelowThreshold
AboveThreshold,
P faDe fined
SNR
SaveThreshold %compare threshold to zeroth
lag below
RxyThreelag %Channel 2 lags Channel 1 by
three pulses.
MaxRxy
diary off

end %end # test points loop

end %end Pfa loop
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% Program Name : snrnoiseloop.m 19 JULY 91
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

dly=0; %Channel 1 delay
wi2=5; %Channel pulse width
pr2=10; %Channel 1 pulse period
nu2=10; %Channel 1 number of pulses
NumberPointsDel=(pr2*nu2)+dly; %calc. nmbr pts sig + delay

dlyCh2=3; %Channel 2 delay
wiCh2=5; %Channel 2 pulse width
prCh2=10; %Channel 2 pulse period
nuCh2=10; %Channel 2 number of pulses
NumberPointsDel2=(prCh2*nuCh2)+dlyCh2; %nmbr pts sig + delay

ZeroPadPoints=NumberPointsDel2+NumberPointsDel-l;%N3=N2+Nl-1
for m=2:1:19; %2^(19) = 524288 point FFT max

if 2^m >- ZeroPadPoints,
ZeroPadPoints=2 Am;
break; %when find a 2^m power, exit loop

end
end

%%%% Create Channel 1 Delayed Pulse Train %%%%%%%%%%%
DelayedPulseTrain=zeros(l:ZeroPadPoints);%0 pad past pr2*nu2
for PulseCounter=(dly+l):pr2:(pr2*nu2+(dly+l));%pr2*nu2=Nmbr

for CutUpPulse=0:pr2; %...pts in Del. Pulse Train
if CutUpPulse<-wi2

DelayedPulseTrain(PulseCounter+CutUpPulse)=1.0;
end

end
end

%%%%% Create Channel 2 Delayed Pulse Train %%%%%%%%%%
DelayedPulseTrain2-zeros(l:ZeroPadPoints);%0 padpast pr2*nu2
for PulseCounter-(dlyCh2+1):prCh2:(prCh2*nuCh2+(dlyCh2+l));

for CutUpPulse-0:prCh2;
if CutUpPulse<-wiCh2

DelayedPulseTrain2(PulseCounter+CutUpPulse)=1.0;
end

end
end

% Signal to Noise Ratio Calculation

% Define Rayleigh noise power to equal 2.
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% Rician pdf created for sinusoid + Gaussian noise.

echo off
NoisePwr=2; %rayleigh noise pwr =2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sum Channel 1 & 2 signals plus their initial delay.

SigEnergy=0; %initialize Channel 1 energy to 0
for index=l:NumberPointsDel;%sum over Ch. 1 delayed signal

SigEnergy=SigEnergy+((DelayedPulseTrain(index)).^2);
end

SigEnergy2=0; %initialize Channel 2 energy to 0
for index=l:NumberPointsDel2;%sum over Ch. 2 delayed signal

SigEnergy2=SigEnergy2+((DelayedPulseTrain2(index)).^2);
end

% Calc. Ch. 1 signal amplitude to meet required input SNR.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SNR10=SNR/10;
SNRLinear-10^SNR10; %SNR in linear units
SigAmpl itude=sqrt(NoisePwr*SNRLinear*NumberPointsDel/SigEner
gy);

% Calc. Ch.2 signal amplitude to meet required input SNR.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SNR10-SNR/10;
SNRLinear-10^SNR10; %SNR in linear units
SigAmplitude2-sqrt(NoisePwr*SNRLinear*NumberPointsDel2/SigEn
ergy2);

% Create Rayleigh Noise matrix for Channel 1.

for index-l:NumberPointsDel,
GaussNoisel(index)-rand; %N(0,1)
GaussNoise2(index)-rand; %N(0,1)

end
RayleighNoise-sqrt((GaussNoisel).A2+(GaussNoise2).^2);

% Create Rayleigh Noise matrix for Channel 2.
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for index=1 NumberPointsDel2,
GaussNoise3 (index) =rand; %N(0, 1)
GaussNoise4 (index) =rand; %N (0,1)

end
RayleigbNoise2=sqrt ((GaussNoise3) . 2+ (GaussNoise4) .2)

% Make Rician amplitude of Channel 1 delayed pulse train
% and remove the dc component of entire signal.

SE=O;
for index=1:NumberPointsDel, %1 -- > delay + delayed signal
if DelayedPulseTrain(index)==l %if one, make Rician

DelayedPulseTrain (index) =DelayedPulseTrain (index) .*rician (Si
gAmplitude);

SE= (DelayedPulseTrain (index)) . 2+SE;
end %end Rician modification loop

end
SP=SE/NuxnberPointsDel;

%%%%%%Add noise to Channel 1 Delayed Pulse Train %%%%%%%
for index-l:NiniberPointsDel, %l -- > delay + delayed signal
if DelayedPulseTrain(index)--O %no Rayleigh noise to signal

DelayedPulseTrain (index) =DelayedPulseTrain (index) +RayleighNo
ise (index);
end

end

%%%%% Remove dc component of Channel 1 Pulse Train %%%%
Chldc-mean (DelayedPulseTrain (1:NumberPointsDel));
DelayedPulseTrain (1:NumberPointsDel) -DelayedPulseTrain (1:Num
berPointsDel) -Chldc;

% Make Rician amplitude of Channel 2 delayed pulse train
% and remove dc component of entire signal.

SE=0;
for index-l:NumberPointsDel2, %l -- > delay + delayed signal
if DelayedPulseTrain2(index)-=1 %if one, make Rician

DelayedPulseTrain2 (index) =DelayedPulseTrain2 (index) .*rician (
SigAmplitude2);

SE- (DelayedPulseTrain2 (index)) . A2+SE;
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end %end Rician modification loop
end
SP=SE/NumberPointsDel2;

%%%%%% Add nc 3e to Channel 2 Delayed Pulse Train %%%%%%%%
for index=l:NumberPointsDel2, %l -- > delay + delayed signal
if DelayedPulseTrain2(index)==0 %no Rayleigh noise to sig

DelayedPulseTrain2 (index) =DelayedPulseTrain2 (index) +Rayleigh
Noise2 (index);
end

end

%%%%% Remove dc component of Channel 2 Pulse Train %%%%
Ch2dc--mean(DelayedPulseTrain2 (l:Nuxber~ointsDel2));
DelayedPulseTrain2 (1 :NuzberPointsDel2) =DelayedPulseTrain2 (1:
NumberPointsDel2) -Ch2dc;

DelayedPulseTrain=DelayedPulseTrain (1:100);
DelayedPulseTrain2=DelayedPulseTrain2 (1: 100);

RayleighNoise=RayleighNoise (1: 100);
RayleighNoise2=RayleighNoise2 (1:100);

87



Time Domain Correlation

in Noise Flowchart

[Define Pta. SNR corrcae Rxv 0) to

130 )ra s pe' SNR t~S,~

Detne Co-eiron

b~uda.y 
I>

incorrect TOOA

Create shtfted Fiaylegt ,Z. esfimale
nwie ye ,

L ~Correct, TDOA esi-mate

Pay 0) sh'ttel: Ra'e-gri

nose

alcultite noise variance

ICatulate Tivesiola
for Pl

Create Pician delayed

signal tor specified

SNR Idelay = mi)

- 1 
4

%Vy 0 Riven slgnal

Plus Shsted Rilyleigh

noise

rigurte 25. Corr~faLoop.m MATLAB flowchart.

88



APPINDIX C. TDOA CONSTANT THRZSHOLD SIMULATION

A.. INTRODUCTION

Four graphs of the output of a time domain based

correlation detector using a constant threshold are given.

Each figure has four simulations using a SNR of ldB. The P,.

is varied from 0.01 to 0.00001 from Figure 26 to Figure 29.
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APPENDIX D. FFT OUTPUT NOISE TO SIGNAL RATIO

A. INTRODUCTION

The noise to signal ratio for thirteen passes through a

FFT butterfly are calculated below. The calculation assumes

the word length of the arithmetic logic unit (ALU) of the

computer is 16 bits long. The length of the input data points

are 12 bits long. The data points are right justified when

placed into the ALU. For a 16 bit ALU and a 12 bit data

input, scaling occurs at the seventh pass and every other pass

after that.

Peas 1

The noise power at the output of the butterfly after the

first pass NA2 (1) is a function of

N2(1) = 2N(() + 2o(0) + S2a2(O) + (1-(0)

where S2 = signal power input to butterfly
2=OT= truncation noise power (74)

a= scaling noise power
a sine/cosine table noise power

N2 (O) = noise power input to FFT .

During pass one there is no scaling, no truncation, and the

trig table is not used. These error terms are zero. Equation

74 reduces to
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212 ( 5Nj (1) = 2N

where N. (75)

= noise input to butterfly

Pass 2

The noise power at the output of the butterfly after the

second pass NA2 (2) is a function of

NA2(2) = 2NA(1) + 2o2(i) + 2S2 () + o2(i) (76)

During pass two scaling and truncation are not performed, and

the trig table is not used. These noise terms are zero.

Substituting Equation 75 into 76

N (2) 2 (2N) (77)

= 22N .

Pass 3

The noise power at the output of the butterfly after the

third pass NA2 (3) is a function of

NA(3) = 2NA(2) + 2o(2) + 22S o'(2) + -o(2) (78)

Scaling noise is zero because it is not performed during pass

three. Substituting Equation 77 into 78
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Nj (3) = 2 (22 ) 9 2 T(79)

= S 3N i22S202, +

Pass 4

The noise power at the output of the butterfly after the

fourth pass N.2 (4) is a function of

NA(4) = 2NA(3) + 2o2(3) + 23s2o2(3) + o02(3) (80)

Scaling noise is zero because it is not performed during pass

four. Substituting Equation 79 into 80

N, (4) = 2'N2 + 202o + 302 (81)

Pass 5

The noise power at the output of the butterfly after the

fifth pass N,2 (5) is a function of

NA(5) = 2NA2(4) + 2o 2(4) + 24S2o2(4) + o(4) (82)

Scaling noise is zero because it is not performed during pass

five. Substituting Equation 81 into 82

NA2(5) = 25N2 + (25 + 24)S2o, + 7o0 (83)

Pass 6

The noise power at the output of the butterfly after the

sixth pass N,2 (6) is a function of
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Nj(6) = 2N;(5) + 2o2(5) + 22o W(5) + O(5) (84)

Scaling noise is zero because it is not performed during pass

six. Substituting Equation 83 unto 84

N; (6) = 2 N2  2 S20+ 150 T (85)

Pass 7

The noise power at the output of the butterfly after the

seventh pass N. 2 (7) is a function of

N2(7) = N()+ 2o2 (6) + Zs632(6) + 02 (6) (6

Scaling is performed for the first time during pass seven.

Substituting Equation 85 into 86

N7(7) 2 2 S2o. 3o 2o (87)--2(7 2 N (2 + 26) 2 I

Pass 8

The noise power at the output of the butterfly after the

eighth pass N.2 (8) is a function of

N,2(8) = 2NA2(7) + 202(7) + 2S212(7) + c .(7) (88)

Scaling is not performed during this pass. Only the scaling

noise from the previous pass is added. Substituting Equation

87 into 88

NI (8) = 2 N4 (29 + 2°) 3202 + 63or * 4o. (89)
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Pass 9

The noise power at the output of the butterfly after the

ninth pass NA2( 9 ) is a function of

N2N9 -- 2N (8) - 2o -(8) 2eS2,o(8) . a (8) (90)

Substituting Equation 89 into 90

NA(9) - 2 N + (210 + 29 + 28) S2(oi l27o. + l0o (91)

Pass 10

The noise power at the output of the butterfly after the

tenth pass NA2 (10) is a function of

N,2(10) = 2N'(9) 2(9) 29S22 (9) + 2(9) (92)

Scaling is not performed this pass. Only the scaling noise

from the previous pass is added. Substituting Equation 91 into

92

Nj (10) = 21 ° + 2 2o. + 255aT + 20o ,  (93)

Equation 93 describes the noise power at the output of a

butterfly after the tenth data pass. The noise to signal ratio

after the tenth pass through the butterfly is expressed as the

ratio
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-A(10) = 2'O -2 2 -Y 5 0 -C'(4
.2 21 0 S 2

Dividing through by the denominator (signal power) each

independent and uncorrelated noise term can be identified

2 2 1 (2 1 C2
i(10)=L"+4a2I 

I - -__ _
s 2  S 2  4 S2 51 S 2

where NA (10) = output Noise to Signal ratio
s2

N = input Noise to Signal ratio (95)
s2

4o2,, = sine/cosine table noise

1 truncation Noise to Signal ratio

421 Os
- scaling Noise to Signal ratio

The noise to signal ratio calculation for 13 passes (2'

= 8192 points) through the butterfly algorithm continues

Pass 11

The noise power at the output of the butterfly after the

1 1 th pass N. 2 (11) is a function of

M(11) - 2N.(10) - 2a(10) 21os2O(1o) c(lo) (96)

Substituting Equation 93 into 96

N.2(11) = 2"*N + (2 13 - 210) S2O2 511GJ. + 420 (97)
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Pass 12

The noise power at the output of the butterfly after the

1 2 th pass N,1(12) is a function of

NA(12) = 2NA2(ll) + 2aCs(11) + 211S2,(Il) (i )11 (98)

Scaling is not performed this pass. Only scaling noise from

the previous pass is added. Substituting Equation 97 into 98

N (12)--2N12 + (214 - 212) s, + 1023, + 84aTs (99)

Pass 13

The noise power at the output of the butterfly after the

1 3 th pass NA2 (13) is a function of

(100)

NA(13) = 2NA(12) + 202(12) , 2 WS20 (12) + a2.(12)

Substituting Equation 99 into 100

(101)
N.2(13) = 2N+ (2 2 13 212)S20. 2047 + 170

Equation 101 describes the noise power at the output of a

butterfly after the 1 3 th data pass. The noise to signal ratio

after the 1 3 th pass is expressed as the ratio

N A 21N + (215 + 21+ 21) SO, + 2047a7. + 170o2 (102)
(13) = 213S 2

Dividing through by the denominator, each independent and

uncorrelated noise term can be identified
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N 2 2  2

N 4 q 2 (FT +4 1 ty
_7 (13) s2 -4-r -

where N, (13) = output Noise to SignaL ratio

N2_q = input Noise to Signal ratio (103)

5.5(Yf = sine/cosine table noise
2

= truncation Noise to Signal ratio

= scaling Noise to Signal ratio

101



LIST OF REFERENCES

1. Sonnenberg G.J., Radar and Electronic Navigation, D. Van
Nostrand Company, INC., 1951.

2. Adamo R.C., Kalman Filtering in the Spectral Domain,
Master's Thesis, Naval Postgraduate School, Monterey,
California, March 1991.

3. Skolnik M.I., Radar Handbook, McGraw-Hill, 1990.

4. Skolnik M.I., Introduction to Radar Systems, McGraw-Hill,
1980.

5. Oppenheim A.V., Digital Signal Processing, Prentice-Hall,
1975.

6. Bendat J.S. and Piersol A.G., Random Data Analysis and
Measurement Procedures, Wiley-Interscience, 1986.

7. harris f.j., Working papers, 2 May 1991.

8. harris f.j., Working papers, 9 August 1991.

102



INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor Ralph Hippenstiel, Code EC/Hi 3
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

5. Professor Harold Titus, Code EC/Ti 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

6. Professor Roberto Cristi, Code EC/Cx 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

7. Professor Charles Therrien, Code EC/Th 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

8. Mr. Frank Mika 2
3246 Test Wing
Electronic Warfare Test Division, TZW
Eglin AFB, FL 32542-5000

9. Mr. George Barrow 1
3246 Test Wing
Range Systems Directorate, TFRR
Eglin AFB, FL 32542-5000

103



10. Naval Ocean Systems Center
ATTN: Dr. C.E. Persons, Code 732
San Diego, CA 92152

104


